MMP Learning Seminar

$$
\text { Week } 58:
$$

-Global - to - local.

- Upper bound for the volume
- Birational boundedness.

Theorem (Adjunction): Let $I \subseteq[0,1]$ be a subset containing 1 . Let X prog of dimension n. \& $V \subseteq X$ be an irreducible subvanety. with normalization $W \longrightarrow V$ Suppose (X, Δ) is a \log pair * $\Delta^{\prime} \geqslant 0 \mathbb{R}-C_{\text {arbiter }}$ with the following properties:
(1) the coefficients of Δ belong to I,
(2) (X, Δ) is kit, and
(3) there exists a unique non-klt place V of $\left(x, \Delta+\Delta^{\prime}\right)$ with center V.

There exists Θ divisor on W with coff in $\left\{a \mid 1-\infty \in L C T_{n-1}(D(I))\right\} \cup\{L\}$ such that

$$
\left.\left(k_{x}+\Delta^{\prime}+\Delta^{\prime}\right)\right|_{w}-\left(k_{w}+\Theta\right)
$$

is pref.
Assume V is a general element of a family covering X.
$v \xrightarrow{\psi} W$ the normalization and ψ the strict transform of Θ,
Then $k_{v}+\psi \geqslant\left.\left(k_{x}+\Delta\right)\right|_{v}$.

Theorem 3.5.5:

$$
D_{0}=\left\{(X, \Delta) \mid X \operatorname{prog} n \text {-dim, }(X, \Delta) k \mid t \& k_{x}+\Delta \text { ample }\right\} \text {. }
$$

Assume we can control pike \& l :

1) $V \longrightarrow B$ dominant family of sobvarieties. if $b \in B$. there exists $0 \leq \Delta_{b} \sim_{Q}(1-\delta) H$, for some $\delta 20$. sit there is 2 unique non-kilt place of $(x, \Delta+\Delta b)$ whose center is Δ_{b} where $H=k(k x+\Delta) \quad(k)$
2) D on $W \longrightarrow V_{b}$ such that ϕ_{D} is biratronal \& $l H I_{W}-D$ pref (l)
3) $p \Delta$ integral or Δ has standard coeff. (p) meaning 1- $\frac{1}{n}$

Then $\varnothing_{m k}\left(k_{x}+\Delta\right)$ is biratronal for all $(X, \Delta) \in \mathcal{B}_{0}$

Theorem A_{n} : Local $A C C$ in $\operatorname{dim} n$.

Then vol (Δ) is bounded above. (upper bound for the volume.
Theorem $C_{n}: \quad(X, \Delta) \in B \Longleftrightarrow(X, \Delta)$ dim n, projective, $l_{c}, \operatorname{coeff}(\Delta) \leq 1, K_{x}+\Delta$ big. Then (X, Δ) is \log birationally banded. (biratoonilly banded)
Theorem D_{n} : Global ACC.
$k_{x}+\Delta \equiv 0$, Ic prof of dim \& coif \triangle are in $2 B C C$,
then actually they belong to a finite sol.
5. Global-to-local: $\quad D_{n-1} \Longrightarrow A_{n}$.

Lemma 5.1: Fix integer n, $I \subseteq[0,1], 1 \in I$.
(X, Δ) Ic of $\operatorname{dim} n+1, \quad \operatorname{coeff}(\Delta) \subseteq I, V \leqslant X$ non-cklt center.
$\stackrel{c}{=} I$ a coif of a component $\underline{\underline{M}}$ of Δ contzing V.
We can find (S, Θ) pros of $\operatorname{dim} \leqslant n, \quad$ coif $(\Theta) \subseteq D(I)$
$k_{S}+\Theta \equiv 0$ and some comp of Θ has corf of the form of thin pome coop.

$P_{\text {roof }}: V$ is a unique lace, every comp of Δ contain V.
Step 1: There is a component of Δ with weft 1 .

$$
Y \longrightarrow S \subseteq \Delta,\left.\quad\left(K_{x}+\Delta\right)\right|_{Y}=k_{\tau}+\Gamma, \quad \operatorname{coctf}(\Gamma) \subset D(I)
$$

component N with coif $d=\frac{l-1}{\ell}+\frac{g+j s}{l}$, conking the premiere of V. $g \in I_{+}$.
inversion of adjunction, every component of the inverse image of V on Y 152 tcc of (Y, Σ)
$\operatorname{dim} Y \leq n-1 \quad$ Apply induction.

$$
D(D(I))=D(I)
$$

Step 2: The statement when $\lfloor\Delta\rfloor=0$.
$f: Y \rightarrow X$ dit modification of (X, Δ). Y Q-factored. $K_{r}+T+\Gamma=f^{*}\left(K_{x}+\Delta\right), T$ is the sum of exc.
We may that the inverse mage of V is contained in T.
$S \subseteq T$ ir r component that int the stirct transform N of M

$$
\left.\left(k_{r}+\Gamma+T\right)\right|_{s}=k_{s}+\Theta .
$$

($S,(\Omega)$. have all the conditions except it may not be pros

γ The map $S \longrightarrow V$ is prog, so we may replace s with 2 genera fiber of it

Lemm2 5.2: $I \subseteq[0,1] D C C, J_{0} \subseteq[0,1]$ finite. Then

$$
\left.I_{0}=\left\{c \in I \left\lvert\, \frac{m-1+f+k c}{m} \in J_{0}\right. \text { for some } k \in \mathbb{N} \leqslant f \in D C_{1}\right)\right\}
$$

is finite.

Lemma 5.3: $D_{n-1} \Longrightarrow A_{n}$.
Proof: I $D C C$, so does $J=D(I)$.
Th $D_{n-1} \Longrightarrow(S, \Theta) \quad \operatorname{dim} \leqslant n-1$, coif $\Theta \subseteq J$,
then the coeff $\Theta \leq J_{0}$ for some so ss.
Set $I_{0}=\left\{c \in I \left\lvert\, \frac{m-i+f+k c}{m} \in J_{0}\right.\right.$ for some $\left.k_{0}, m \in \mathbb{N}, f \in I_{+}\right\}$
Jo is finite \Longrightarrow Io is finite
(X, Δ) is $l_{c}, \operatorname{coeff}(\Delta) \subseteq I, \quad Z \subseteq X$ non-klt contained
in every single comp of $\Delta,(5.1) \Longrightarrow$ coeff Δ belong to I_{0}

Upper bound for the volume:
$D:=\left\{(X, \Delta) \operatorname{dim} n, \quad \operatorname{coeff} \Delta \subseteq I, \quad k_{x}+\Delta \equiv 0,\right\} \quad$ vol (Δ) is bounded above
Lemma: Assume $D_{n-1} \& A_{n-1}$. There exists $\varepsilon z 0$. such thenIf $(X, \Delta) \in D, \Delta$ big, $K_{x}+\Phi \equiv 0$., where

$$
\Phi \geqslant(1-\delta) \Delta
$$

for some $\delta<\varepsilon$, then (X, Φ) is kit
$P_{\text {roof: }}$

$$
\text { oof: } A_{n-1}+D_{n-1}\left\{\begin{array}{l}
\left(S, \Theta^{\prime}\right) \text { of dim } n-1, \text { coff } \Theta \in D(1) \text { and } \\
(1-\varepsilon) \Theta^{\prime} \leqslant \Theta^{\prime} \leq \Theta(\varepsilon \text { only depend on } n-1) . \\
\text { then }(S, \Theta) l_{c} \Longleftrightarrow\left(S, \Theta^{\prime}\right) \text { is } l_{c} . \\
\text { Moreover } \Theta=\Theta^{\prime} \text { if } k_{s}+\Theta^{\prime} \equiv 0 .
\end{array}\right.
$$

Step 1: To reduce to the case in which (X, Φ) is pill.
Step 2: Reduce to the case in which all divisors in the picture are Q-proportional.
$\phi: Y \longrightarrow X$ dIt modification of (X, Φ)

$$
\begin{aligned}
& k_{y}+\psi=\phi^{*}\left(k_{x}+\Phi\right) \\
& k_{y}+\Gamma+\alpha S=\phi^{*}\left(k_{x}+\Delta\right) \\
& \alpha<1, S=\lfloor\psi\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& (-S)-\text { negilne } \quad \rho(w / z)=1 \\
& k_{-r+\psi} \equiv 0
\end{aligned}
$$

$$
k_{r}+\psi-s \text { is not pseff. Run 2 }\left(k_{r}+\psi-s\right)-\text { MMP. }
$$

$$
\stackrel{p}{\gamma}
$$

All the steps of the MMP are S-porter
the strict transform T of S in W is honzontul over the base Z.
$F a$ general fiber of $\pi_{1} \quad(Y, \Gamma, \psi) \longmapsto\left(F,\left.\left.p_{N} \Gamma\right|_{F,} p_{*} \psi\right|_{F}\right)$

Step 3: We conclude using the first paragraph

$$
K \gamma+\Gamma+S \text { is ample. } \quad \psi \geqslant(1-\varepsilon) \Gamma+S \text {, then. }
$$

$k x+(1-\eta) \rho+S \equiv 0$ for some $0<\eta<\varepsilon$, and.
$K y+(1-\varepsilon) \Gamma+S$ is \log canonical.

$$
\begin{aligned}
& \left.\left(k_{y}+(1-\varepsilon) \Gamma+s\right)\right|_{S}=k_{S}+\Theta_{1} \quad\left(S, \Theta_{1}\right) \text { is } l_{c} \\
& \left.\left(K_{\tau}+(1-\eta) \Omega+s\right)\right|_{S}=K_{s}+\Theta_{2} . \quad K_{s}+\Theta_{2} \equiv 0 \text {. } \\
& \left.\left(k_{-r+}+I^{2}+s\right)\right|_{s}=k_{s}+\Theta \text {., } \quad \operatorname{coeff} \Theta \subseteq D(I) \text {. }
\end{aligned}
$$

$(1-\varepsilon) \Theta \leqslant \Theta_{1} \leqslant \Theta_{2} \leqslant \Theta$
$\Longrightarrow\left(S, \Theta_{2}\right)$ is \log canonical.
$\Longrightarrow\left(S, \Theta_{1}\right)$ is \log canonical.

$$
\Longrightarrow \quad \Theta=\Theta_{2}
$$

Lemma 2 6.2: $D_{n-1}+A_{n-1} \Longrightarrow B_{n}$.
Proof: $\quad\left(X_{i}, \Delta_{i}\right) \in D \quad \operatorname{Vol}\left(\Delta_{i}\right) \longrightarrow \infty$

$$
\Gamma_{i} \sim \mathbb{R} \varepsilon_{i} \Delta_{1}, \quad \varepsilon_{i} \longrightarrow 0 .
$$

$\left(X_{i}, \Gamma_{i}+\left(1-\varepsilon_{i}\right) \Delta_{i}\right)$ not kIt. $\quad K_{x_{i}}+\Gamma_{i}+\left(1-\varepsilon_{i}\right) \Delta_{i} \equiv 0$.

$$
\Gamma_{i}+\left(1-\varepsilon_{i}\right) \Delta_{i} \geqslant\left(1-\varepsilon_{i}\right) \Delta i \quad \longrightarrow \longleftarrow \square .
$$

$\operatorname{Vol}(\Delta) \leqslant\left(\frac{n}{\varepsilon}\right)^{n}$ where ε is 25 in Lemma 6.1.

Birational boundedness:
Lemme 7.1: (X, Δ) pair, X pros. D by \mathbb{R}-divisor.
If $\operatorname{vol}(D)>(2 n)^{n} \quad$ there exists $\quad V \longrightarrow B$ coverry X. st if $x \times y$ are general in X., then we may find $b \in B$. $0 \leq D_{b} \sim_{\mathbb{R}} D$ s.t $\left(X, \Delta+D_{b}\right)$ is lo but not kit at both $x e y$ and there exists a unique non-klt place of $\left(X, \Delta+D_{b}\right)$ with center V_{b} containg x.

Lemma 7.2: Assume $C_{n-1}+A_{n-1}$. Fix p a positive integer.
$\mathscr{B}_{1}=\left\{(X, \Delta)|k| t\right.$ of $\operatorname{dim} n$ prop, $k_{x}+\Delta$ big, $\mid P \Delta$ integral or Δ tended $\}$ Then $\phi_{m}\left(k_{x}+\Delta\right)$ is biratronal for every $(x, \Delta) \in \mathbb{D}_{2}$.

Proof: Assume $k_{x}+\Delta$ ample.

$$
\text { Fix k st. } \operatorname{vol}(\bar{k}(k x+\Delta))>(2 n)^{n}
$$

Apply 7.1 to $k(k x+\Delta)$ to get a family $V \longrightarrow B$,
$v: W \longrightarrow V_{b}$ normalization

$$
\left(k_{x}+\Delta+\Delta b\right) \mid w-(k w+\Theta) \text { pref. }
$$

Θ has coefficients in some $D C C$ set $\longleftarrow A_{n-1}$
$U \longrightarrow W$ log resolution, $\quad k_{v}+\psi \geqslant k_{x}+\left.\Delta\right|_{v}$

$$
\text { so } k_{0}+\psi \text { is big. }
$$

$$
\begin{aligned}
& C_{n-1} \longrightarrow \phi\left[\left(\mathrm{KU}_{\mathrm{J}}+\psi\right) \text { is binational where } l\right. \text { is fixed. } \\
& \text { (3.5.5) } \Rightarrow \varnothing_{k m_{0}\left(k_{x}+\Delta\right)} \text { is birationl } \\
& \operatorname{Vol}(k x+\Delta) \geqslant 1 \Longrightarrow \operatorname{Vol}(2(n+1)(k x+\Delta))>(2 n)^{n} \quad k=2(n+1) \text {. } \\
& \operatorname{vol}(16 x+\Delta)<1 \text {. } \\
& (2 n)^{n}<\operatorname{Vol}_{0}(k(k x+\Delta)) \leqslant(4 n)^{n} \text {. }
\end{aligned}
$$

Hence, $\operatorname{vol}(\operatorname{mok}(k x+\Delta)) \leqslant(4 \text { mon })^{n}$.
$D C C$ of volumes vol $(\alpha(k x+\Delta))>(2 n)^{n}$ for $\alpha=\frac{2 n}{\delta}$ where δ is the minimum volume.

Assume C_{n-1} \& A_{n-1}
There exists $\beta<1$ sit if $(x, \Delta) \in \mathcal{B}$ then the prof thresholds:

$$
\lambda=\text { inf }\left\{t \in \mathbb{R} \mid k_{x}+t \Delta \text { is big }\right\}
$$

is at most β.
Proof: Assume (X, Δ) is sic.
(Assume $\lambda>\frac{1}{2}$ so k_{x} is not pref
$0 \leqslant D \sim R(k x+\Delta)$. If ε_{20}, then
$(1+\varepsilon)\left(k_{x}+\lambda \Delta\right) \sim \mathbb{R} \quad k x+\mu \Delta+\varepsilon D$ for some $\mu<\lambda$.
$\tau_{\text {kIt for }} \varepsilon$ small enough

$$
(k x+\lambda \Delta)-\text { MAP } \quad X \xrightarrow{f}, \quad, \quad K_{Y}+\Gamma \text { is nets } f . \lambda \Delta=\Gamma
$$

$R_{\text {on }}\left(k_{y}+\mu f_{x} \Delta\right)-M M P \quad$ to get to 2 MFS $\quad Y \longrightarrow Z$
Assume $k_{y}+\Gamma \equiv 0$.
$\left(X_{l}, \Delta_{l}\right) \in B \quad$ pref thresholds arc $\lambda_{1}<\lambda_{2}<\ldots$
Let $J=\left\{\lambda_{e} i \mid \quad i \in I, l \in \mathbb{N}\right\} \quad J$ satisfies $D C C$.
$B_{n}\left\{\begin{array}{l}\operatorname{vol}(\Gamma)<C \text { for any }(Y, \Gamma) \text { coeff }(\Gamma) \subseteq J . \\ \text { If } \alpha \text { is the smallest element in } j, G=\text { sum of comp of } \Gamma \text {. } \\ \text { Then } v_{0} \left\lvert\,\left(k_{Y}+G\right) \leqslant \frac{C}{\alpha^{n}} .\right.\end{array}\right.$
We want to apply 7.2:

$$
k x+\Delta \text { is by. }
$$

D be the sum of comp of Δ. $\quad k_{x}+D$ big $\quad D \Delta$
$k x+D=f^{*}(k \imath+G)+F$, where F eff \& f-exc.
Then, $\quad \operatorname{Vol}\left(k_{x}+D\right) \leqslant \operatorname{vol}\left(k_{-r+}+G\right) \leqslant \frac{c}{\alpha^{n}}$.
$\left(X_{l}, D_{l}\right)$, you m $2 y$ proc $r \in \mathbb{N} T: \quad K_{x_{l}}+\Theta_{l}:=K_{x_{l}}+\frac{r-1}{r} D_{l}$ is big
$(7,2) \Longrightarrow\left(X_{l}, \Theta_{l}\right)$ are birationilly bounded
$\Longrightarrow\left(X_{l}, \Delta l\right)$ is birationally bounded.
Hence, $v_{0} l\left(k_{x_{e}}+\Delta_{\ell}\right) \geqslant \delta$ for every ℓ.

$$
\delta \leqslant \operatorname{vol}_{0}\left(k_{x}+\Delta\right) \leqslant \operatorname{vol}_{0}\left(k_{y}+\frac{1}{\lambda} \Gamma\right)=\left(\frac{1}{\lambda}-1\right)^{n} \operatorname{vol}_{0}(\gamma, \Gamma) \leqslant\left(\frac{1}{\lambda}-1\right)^{n} c \text {. } \quad \text { a }
$$

Birational boundedness:
Lemma 7.4: $C_{n-1}+A_{n-1}+B_{n} \Longrightarrow C_{n}$.
Proof: α is the smallest element in 1 .
Assume $(X,<l)$ is \log smooth and kilt.
pref threshold of Δ is at most $\beta<1$.
Pick $p: \quad p>\frac{2}{\alpha(1-\beta)}$.
Observe: $\frac{L p a s}{p}>\frac{\alpha(1+\beta)}{2}$ consoled denominator.
Hence: $\quad \frac{\beta+1}{2} \Delta \leqslant \Delta_{L p J} \leqslant \Delta$.
$K_{x}+\Delta_{(p)}$ is brg.
$\notin m\left(k_{x}+\Delta(p)\right)$ is biratioml by 7.2
\Downarrow
$\oint_{m}(k x+\Delta)$ is also biretionul.

Regularity and log canonical threshold:
(X, Δ) lc, $\quad \operatorname{reg}(X, \Delta):=\operatorname{dim} D(X, \Delta)$.
($\quad\left(y, s_{1}+\cdots+s_{r}+\Delta y\right)$
$D(X, \Delta) ?$
$\downarrow d \mathrm{It} \bmod$.

$$
(x, \Delta)
$$

$$
D=\omega
$$

ACC for lect's of the same dimension holds.
thresholds of tore divisors on tori varieties $=1$.
$G l_{0} b_{2} 1-t_{0}-l_{0} c_{2} l_{:}$

dim-reg 15 small. we expect to find many divisors with coeff 1 intarocty exch other

(x, Δ)

