

- Gilobal to local.
- Upper bound for the volume.
- Birational boundedness.

Theorem (Adjunction): Let
$$I \subseteq [0,1]$$
 be a subset containing 1.
Let X proj of dimension n. & VSX be an irreducible subvenely.
With normalization $W \longrightarrow V$. Suppose (X, Δ) is a log pair & $\Delta^{i} \ge 0$ IR-Carbon
with the following properties:
(1) the coefficients of Δ below to I.
(2) (X, Δ) is kit, and
(3) there exists a unique pon-kit place V of $(X, \Delta + \Delta^{i})$ with conter V.
There exists (Θ) divisor on W with coeff in $\{\Delta = 1, 2 - \alpha \in LCT_{R-1} \cap DCI\} \} \cup [1+1]$
such that
 $(K_X + \Delta + \Delta^{i})]_N = (K_W + \Theta)$
Is poeff.
Assume V is a general element of a family covering X.
 $V \xrightarrow{\Psi} W$ the normalization and Ψ the strict transform of (Θ) .
Then $K_U + \Psi \ge (K_X + \Delta)|_U$.

Theorem 3.5.5:

$$B_{0} = \{(X, \Delta) \mid X \text{ proj } n-dim, (X, \Delta) \text{ Klt } & K_{X} + \Delta \text{ ample } \}.$$
Assume we can control $p, K \notin l$:
1) $V \longrightarrow B$ dominant family of subvariations. if be B.
There exists $0 \le \Delta b \sim \alpha (1-\delta)H$. for some $\delta \ge 0$. s.l
there is a unique non-kill place of $(X, \Delta + \Delta b)$ whose center is Δb
where $H = K(K_{X} + \Delta)$ (k)
2) D on $W \longrightarrow V_{b}$ such that \neq_{D} is birational & $|H|_{W} - D$ psoff (l)
3) $p\Delta$ integral or Δ has standard coeff. (p) meaning $1 - \frac{1}{n}$

Then & mk(kx+A) is birational for all (X,A) 6.8.

Theorem An: Local ACC in Jim n.

$$J + i$$

Theorem Bn: $(X, \Delta) \in \mathfrak{D} \iff (X, \Delta)$ dim n kit, coeff $\Delta \subseteq I$, k $K \times + \Delta \equiv 0$.
Then $Vol(\Delta)$ is bounded above. (upper bound for the volume).
Theorem Cn: $(X, \Delta) \in \mathfrak{B} \iff (X, \Delta)$ dim n, projective, lc, coeff(Δ) $\subseteq I$., $K \times + \Delta$ by.
Theorem Dn: (X, Δ) is log birationally bounded. (birationally bounded)
Theorem Dn: Global ACC.
 $K \times + \Delta \equiv 0$, lc proj of dim n k coeff Δ are in a DCC,

5. Global - to - local: $D_{n-1} \Longrightarrow A_n$.

Lemma 5.1: Fix integer is,
$$I \subseteq I \circ I$$
, $I \circ I$.
 (X, Δ) is of dim. $n+1$, $Coeff(\Delta) \subseteq I$, $V \subseteq X$ non-xit contender.
 $C \in I$ a coeff of a component M of Δ containing V .
We can find (S, Θ) proj of dim $\leq n$, $Coeff(\Theta) \subseteq D(I)$.
 $KS + \Theta \equiv O$ and some comp of Θ has coeff of the formula of M at the genere part of the formula of M of M .
 $KS + \Theta \equiv O$ and some comp of Θ has coeff of the formula of M of M .
 $KS + \Theta \equiv O$ and some comp of Θ has coeff of the formula of M .
 S control $I - \frac{1}{m} + \frac{1}{m} + \frac{1}{m} + \frac{1}{m}$ or M .
 $Control M of M of M .
 $KS + \Theta \equiv O$ and $f \in D(1)$.
 $Control M of M .
 M or M , $K \in \mathbb{N}$ and $f \in D(1)$.
 $Control M .$$

Step 2: The statement when $L \Delta J = 0$

X

$$f: \Upsilon \longrightarrow \chi$$
 dle modification of (χ, Δ) . $\Upsilon Q = fectored$.

$$K_{T} + T + P = \int (K_{X} + \Delta), T$$
 is the sum of exc.

$$(K_{Y}+\Gamma+T)I_{S} = K_{S}+\Theta.$$

Lemma 5.2: I S [0,1] DCC, Jo S [0,1] finite. Then

$$I_0 = \left\{ C \in J \mid \frac{m-1+f+kc}{m} \in J_0 \text{ for some } k \in \mathbb{N}^T \notin f \in D(1) \right\}$$

is finite.

Lemma 5.3: $D_{n-1} \implies A_n$

Proof: I DCC, so does J = D(1).

The $D_{n-1} \implies (S, \Theta) \dim \leq n-1$, coeff $\Theta \subseteq J$,

then the coeff
$$G \subseteq J_0$$
 for some $J_0 \subseteq J$.

Set $I_0 = \left\{ C \in I \right| \frac{m - \iota + j + \kappa c}{m} \in J_0 \text{ for some } \kappa_0, m \in \mathbb{N}^{\gamma}, j \in I_+ \right\}$

$$(X, \Delta)$$
 is lc , $coeff(\Delta) \subseteq I$, $Z \subseteq X$ non-kilt contained

in every single comp of
$$\Delta$$
, (5.1) \Longrightarrow coeff Δ belong to Io

Upper bound for the volume:

Step 3: We conclude using the first parzoriph

$$k' + \Gamma + S$$
 is ample. $\psi \ge (1 - \varepsilon)\Gamma + S$, then.
 $k' + (1 - \eta)\Gamma + S \equiv O$ for some $0 < \eta < \varepsilon$, and.

 $Kr + (1-\varepsilon)\Gamma + S$ is lop Canonicil.

С

 $\implies (S, \Theta_2) \text{ is log canonical}, \qquad (\Theta_1 \leq \Theta_2.)$ $\implies (S, \Theta_1) \text{ is log canonical}.$ $\implies \Theta = \Theta_2 \qquad \qquad \square$

Lemma 6.2: $D_{n-1} \neq A_{n-1} \implies B_n$.

 $\mathsf{P}_{\mathsf{roof}}: (X_{i}, \Delta_{i}) \in \mathfrak{D} \qquad \mathsf{Vol}(\Delta_{i}) \longrightarrow \mathfrak{O}$

 $\Gamma_i \sim \mathbf{R} \ \epsilon_i \Delta_i$, $\epsilon_i \longrightarrow o$.

 $(X_{1,1}, \Gamma_1 + (1 - \varepsilon)\Delta_1)$ not klt. $K_{X_1} + \Gamma_1 + (1 - \varepsilon)\Delta_1 = 0.$

 $Vol(\Delta) \leq \left(\frac{h}{\epsilon}\right)^n$ where ϵ is 25 in Lomma 6.1.

Birational boundedness:

Lemma 7.1:
$$(X, \Delta)$$
 pair, X proj. D by R-divisor.
If $vol(D) > (2n)^n$ there exists $V \rightarrow B$ covery X.
s.t. if $x \neq y$ are general in X., then we may find be B.
 $0 \le D_b \sim_{iR} D$ s.t. $(X, \Delta + D_b)$ is 1c but not kill at both $x \neq y$
and there exists a unique non-kill place of $(X, \Delta + D_b)$ with
center V_b containing x.
Lemma 7.2: Assume Cn-1 + An-1. Fix p a possible integer.
 $B_1 = \{(X, \Delta) \}$ kill of dim n proj, $Kx + \Delta$ bip, $P\Delta$ integen or Δ stended there
Then $\mathcal{P}_m(k_{M} + \Delta)$ is biratronal for every $(X, \Delta) \in \mathcal{B}_3$.

Proof: Assume Kx+ 2 ample.

Fix k sl. Vol
$$(K(Kx+\Delta)) > (2n)^n$$

Apply 7.1 to $K(Kx+\Delta)$ to get a family $V \rightarrow B$,
 $Y: W \rightarrow V_b$ normalization
 $(K_x+\Delta+\Delta b)|_W - (K_W + \Theta)$ psetf.
 Θ has coefficients in some DCC set \leftarrow An-1
 $U \rightarrow W$ log resolution. $K_U + \Psi > K_{x+\Delta}|_U$
so $K_U + \Psi$ is big.
 $C_{n-1} \rightarrow \mathscr{P}_{R}(K_U + \Psi)$ is birational where l is fixed.
 $(3.5.5) \Rightarrow \mathscr{P}_{xM0}(K_{w+\Delta})$ is birational
 $Vol((K_{x+\Delta}) > 1) \implies Vol(2(n+1)(K_{x+\Delta})) > (2n)^m$ $K = 2(n+1)$.
 $Vol((K_{x+\Delta}) < 1) = Vol(x(K_x + \Delta)) < (4n)^n$.
Hence, $Vol((K_X + \Delta)) < (4mon)^n$.
 $DCC of Volumes Vol($\alpha(K_X + \Delta)) > (2n)^m$ for $\alpha = \frac{2n}{5}$
 $(1 + C) = 1$$

where Sis the minimum volume.

Ъ·

Lemma 7.3:
$$\mathcal{B} = \begin{cases} (X \cdot \Delta) \mid X \text{ proj} \text{ of } \dim n \cdot (X, \Delta) \ln \\ \mid K_{X+\Delta} \text{ big & coeff}(\Delta) \leq 1 \end{cases}$$

Assume Cn-i & An-i
There exists $\beta < 1$ sit if $(X_i \Delta) \in \mathcal{B}$ then the pset thresholder
 $\lambda = \inf \{ t \in \mathbb{R} \mid K_X + t\Delta \text{ is } bg \}$
is at most β .
Proof: Assume (X, Δ) is sinc.
(Assume $\lambda > \frac{1}{2}$ so K_X is not prefind
 $0 \leq D \sim_{\mathbb{R}} (K_{X+\Delta})$. If εz_0 , then
 $(1+\varepsilon) CK_X + \lambda \Delta) \sim_{\mathbb{R}} K_X + \mu \Delta + \varepsilon D$ for some $\mu < \lambda$.
 Kit for ε small enough.
 $(K_X + \lambda \Delta) - MMP = X \xrightarrow{f} \gamma$, $K_Y + \Gamma$ is net $f = \lambda \Delta = T$.
Run $(K_Y + \mu f_X \Delta) - MMP$ to get to a MFS $\Upsilon \longrightarrow Z$.

$$(X_{\ell}, \Delta_{\ell}) \in \mathcal{B} \qquad \text{pself thresholds are } \lambda_{1} \in \lambda_{2} \in \dots$$

Let $J = \{\lambda_{\ell} i \mid i \in I, \ell \in \mathbb{N}^{2}\}$ J substates DCC .

$$Vol(\Gamma) \leq C \quad \text{for any } (Y, \Gamma) \quad coeff(\Gamma) \leq J$$
.
Bn $\{I \neq d \text{ is the smallest element in } J = , G = \text{sum of comp of } \Gamma$.
Then $Vol(K_{T} + G) \leq \frac{C}{\alpha^{n}}$.
We want to apply 7.2 :
 $K_{X} + \Delta \text{ is big.}$
 D be the sum of comp of Δ . $K_{X} + D$ big. $D \geq \Delta$
 $K_{X} + D = \int^{*} (K_{T} + G) + \Gamma$, where Γ eff K $f - exc.$
Then, $Vol(K_{X} + D) \leq Vol(K_{T} + G) \leq \frac{C}{\alpha^{n}}$.
 (X_{ℓ}, D_{ℓ}) , you may prove $r \in \mathbb{N}\Gamma$: $K_{X_{\ell}} + \mathfrak{D}_{\ell} = K_{X+\ell} + \frac{r-1}{r} D_{\ell}$ is

Hence, VI(Kxe + De) > S for every l.

 $S \leq Vol(K_{X} + \Delta) \leq Vol(K_{Y} + \frac{1}{N}\Gamma) = \left(\frac{1}{N} - 1\right)^{n} Vol(Y, \Gamma) \leq \left(\frac{1}{N} - 1\right)^{n} C - D$

big

Birational boundedness:

Lemma 7.4:
$$C_{n-1} + A_{n-1} + B_n \implies C_n$$

Proof:
$$\alpha$$
 is the smallest element in I.
Assume (X, Δ) is log smooth and kit:
psetf threshold of Δ is at most $\beta < 1$.
Pick $p : p > \frac{2}{\alpha(1-\beta)}$.
Observe: $\frac{\Delta p \alpha J}{p} > \frac{\alpha(1+\beta)}{2}$.
Comboilled denominator
Hence: $\frac{\beta+1}{2} \Delta \leq \Delta Lp_3 \leq \Delta$.
 $K_{X} + \Delta Lp_3$ is big.
 $\int m(K_X + \Delta Lp_3)$ is birational by 7.2

<u>ں</u>

thresholds of torre divisors on torre verieties = 1.

$$LCT(C;I) = \begin{cases} lct((X,\Delta);D) & (X,\Delta) & h^{2s} dim n \\ lct((X,\Delta);D) & (X,\Delta+tD) & is & lc & of & rep & r \\ C &= n-r & \\ \end{array} \end{cases}$$

satisfies the ACC.

threshold.

